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Mixed-Mode Electronic System

• Usually, the ADC, DAC and ASP blocks limit the accuracy and 

bandwidth.
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Popular Analog-to-Digital Converters
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• For ADCs, trade-off exists between speed and accuracy.

• Oversampling ∆Σ converters have been typically used for high-resolution, 
low-bandwidth applications.

• Recently, there is a trend towards higher-bandwidth applications.
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A Few Applications

Communications Instrumentation

Medical

SensorsConsumer Electronics Multimedia

Music 
Production
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Nyquist-Rate Converters

• A/D Converter:
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• D/A Converter:
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• The accuracy is limited by the matching of analog components.
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Oversampling Converters

• A/D Converter:
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• Advantages:
– Simpler anti-aliasing filter (AAF).
– Relaxed requirements on analog circuitry.

– Resolution ↔ bandwidth trade-off possible.
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First-Order Noise Shaping ADC (1)

• Signal Transfer Function:
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• Noise Transfer Function:
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• Negative feedback loop; H(z) is the gain block:

• Assume that q is random white noise, uncorrelated with u. 
(Valid only for large and fast input to Q. May cause problems 
otherwise) Then:
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First-Order Noise Shaping ADC (2)

• Squared magnitude of signal transfer function: 1
2
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• Squared magnitude of noise transfer function:
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First-Order Noise Shaping ADC (3)

• For quantization noise PSD σq
2, the in-band noise power is:
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Circuit Implementation and Simulations

• First-order single-bit ∆Σ ADC:

to digital 

decimation 

filter

21

12

Ci

Cs
u

VREF -VREF

v

10
3

10
4

10
5

-100

-80

-60

-40

-20

0

Frequency [Hz]

S
p

e
c

tr
u

m
 o

f 
v
 [

d
B

]

7 7.5 8 8.5 9 9.5

x 10
-4

-1.5

-1

-0.5

0

0.5

1

1.5

time [s]

u
, 

v

idle tones

Input signal u and bitstream v Spectrum of bitstream v



11/35Gabor C. Temes

Second-Order Noise Shaping ADC (1)
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Second-Order Noise Shaping ADC (2)

ΩπΩΒ
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• In-band noise power:

Doubling OSR Doubling OSR increasesincreases SNR by 15 dB (2.5 bit/SNR by 15 dB (2.5 bit/octoct))
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Generalization (1)
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• For an L-order NTF, the in-band noise power is:

Doubling OSR Doubling OSR increasesincreases SNR by 6SNR by 6LL+3 dB (+3 dB (LL+0.5 bit/+0.5 bit/octoct))
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Generalization (2)
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Non-Ideal Effects (1)

• So, to get a high SNR:
– Increase number of bits in the quantizer (N)

– Increase order of noise-shaping function (L)

– Increase oversampling ratio (OSR)

• But there are non-ideal effects to take into account:
– Quantization noise is not the only noise source (1/f, thermal, 

digital crosstalk, etc).

– Quantization noise is not truly white (tones, limit cycles).

– Noise transfer function is not ideal (mismatches, finite opamp 
gain).

• And these deserve special attention:
– DAC with N > 1 causes linearity problems.

– L > 2 causes stability problems.
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Non-Ideal Effects (2)

LIMIT CYCLES

• Limit cycles appear for DC or slow varying signals, if the input
voltage is near a rational multiple of VREF, i.e.:

REFV
m

n
u ≈ where n and m are integers

… which causes the output v to repeat itself with a certain period. 

• If frequency of repetition falls in band, SNR can be severely 
degraded.
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Non-Ideal Effects (3)

TONES

• Tones are caused by correlation with input signal u.

• Amplitude of tones increases with the frequency and 
amplitude of input signal u, and decreases with higher 

order L of modulator.

• Easiest way to prevent limit cycles and tones is to add 

random noise (dither) at input of quantizer:

QQ
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v
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Non-Ideal Effects (4)

FINITE OPAMP GAIN

• For ∆Σ ADCs, the gain of the opamps determines how 
much the noise is suppressed in the baseband. 
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DAC Linearity (1)

Digital 
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Analog 
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Digital 
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Analog 
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• Single-bit DAC (N = 1) is always linear. (Only gain and offset error.)

• Multi-bit DAC (N > 1) is only as linear as its analog circuit  elements 
match (typically 9 to 12 bits)
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DAC Linearity (2)

• Nonlinear DAC causes higher noise floor and harmonics.

• 10-bit linear DAC causes 10-bit level SNDR.
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In general, linearity of ∆Σ∆Σ∆Σ∆Σ modulator is no 
better than linearity of DAC
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Improving DAC Linearity

1. Element calibration:

• During fabrication (e.g., laser trimming) – expensive, not 
effective for long-term process variations (temperature, aging, 
etc).

• During circuit operation – can be performed periodically, but 

increases analog design difficulty .

2. Dynamic element matching (DEM):

• Randomize usage of analog elements, so that DAC errors are 
averaged.

• Many different flavors are available (barrel-shifting, individual-
level averaging, data-weighted averaging, tree-structure, etc).

• Works well, but only for high OSR (OSR > 16).

3. Digital Estimation and Correction of DAC errors:

• Correlation based method. Works for any OSR.
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Empirical Results
• SQNR limits for modulators of order L:

1-bit quantizer 2-bit quantizer
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Multi-Stage Noise Shaping (1)

u v1

Digital

Error
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Logic

v

ADC1

(STF1, NTF1)

q1

v2ADC2

(STF2, NTF2)

…

ADCn

(STFn, NTFn)
qn-1

vn

• Purpose of error cancellation logic is to eliminate quantization
noise from all stages, except the last, so that:

nnn NTFNTFNTFQSTFSTFSTFUV LL 2121 ⋅+⋅=

• Order of NTF is the product of the individual orders L1 to Ln.

• Stability is easily guaranteed if L ≤ 2 for every stage.
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Multi-Stage Noise Shaping (2)
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Multi-Stage Noise Shaping (3)

• ANTF is an analog transfer function. DNTF is a digital transfer 

function. What if ANTF and DNTF do not match exactly?

• A certain amount of q1 will show at the output v, degrading SNR.

• This is commonly referred to as “quantization noise leakage”.

• Can be suppressed using digital correlator.
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Low-Distortion ∆Σ∆Σ∆Σ∆Σ Topology (1)

• Integrators do not process input signal, only quantization noise. 

No signal ⇒ No distortion.
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• In traditional topologies, integrators have to process some of input signal.

• This can be avoided by making STF = 1.

• Bonuses:

– Low area and power consumption due to integrator gain scaling.

– Quantization noise readily available at y2. No analog subtraction 

needed for MASH.
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Low-Distortion ∆Σ∆Σ∆Σ∆Σ Topology (2)

• MATLAB simulations with nonlinear function included in first integrator: 

Conventional topology
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∆Σ∆Σ∆Σ∆Σ DAC System
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Error Feedback Architecture
Error feedback structure
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Also, all ∆Σ configurations 
can be used in the noise-
shaping loop.

k
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Cascade DACs

• A cascade DAC using analog recombination:

z-1z-1

u v

• Cascade structure for a second-order noise shaping loop:
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Post-Filter Design
• Post filter for a 1-bit ∆Σ DAC and associated signals:
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• An SC integrator:
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Reconstruction Filter Architectures
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Design Example
A direct-charge-transfer (DCT) stage:
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Combined DAC, DCT and filter for a multi-bit ∆Σ DAC:
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Other Forms of Noise Shaping
• Continuous-time ∆Σ modulation:

– Only quantizer and DAC are clocked.

– Inherent anti-alias filtering, higher speeds, lower power consumption.

• Bandpass ∆Σ modulation:
– Useful for signal bands that are not at DC.

Ωπ

ΩBW

(2π/OSR)Signal 
band

DC ΩC
(center frequency)

Nq
2

σq
2|NTF|2

• Complex ∆Σ modulation

– For quadrature signal pairs. Useful in wireless applications.

• Fractional-N dividers:

– Used in PLLs to generate accurate frequency ratios.

– Useful for clock recovery, channel tuning in radios, etc.
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Conclusions

• Oversampling data converters offer a trade-off: fast clocking and increased 

digital complexity are traded for relaxed analog tolerance and/or conversion 

accuracy.

• This trade-off is attractive for high-resolution converters with narrow (< 5 

MHz) bandwidths, allowing many applications in instrumentation, consumer 

electronics and communications. The bandwidth (and hence the field of 

applications) is continuously widening with faster IC technologies.

• The design of ∆Σ converters is based on a qualitative understanding of the 

noise shaping process based on idealized assumptions, followed by high-

level simulations, and transistor-level simulation of the individual stages.

• High-resolution oversampling converters require an understanding of 

nonideal effects (noise coupling, signal dependent quantization errors and 

reference loading, noise leakage, etc.) and available methods for their 

prevention. This was not covered in this lecture, but can be found in the 

references given.


